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Summary. The methodology (based on the so-called Dynamic Virtual Distortion
Method) of the design of structures exposed to impact loading is presented in the
work. Minimization of material volume and accelerations of structural response are
chosen as the objective functions for optimal design of structures adapting to impact
loads. The cross-sections of structural members as well as stress levels triggering
plastic-like behavior and initial prestressing are the design parameters. A general
formulation of this problem, as well as particular cases, are discussed.
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1 Introduction – Problem Formulation

Motivation for the undertaken research is to respond to requirements for high
impact energy absorption e.g. in the structures exposed to the risk of extreme
blast, light, thin wall tanks with high impact protection, vehicles with high
crashworthiness, protective barriers, etc. Typically, the suggested solutions
focus on the design of passive energy absorbing systems. These systems are
frequently based on the aluminum and/or steel honeycomb packages characte-
rized by a high ratio of specific energy absorption. However high is the energy
absorption capacity of such elements, they still remain highly redundant struc-
tural members, which do not carry any load in the actual operation of a given
structure. In addition, passive energy absorbers are designed to work effec-
tively in pre-defined impact scenarios. For example, the frontal honeycomb
cushions are very effective during a symmetric axial crash of colliding cars,
but are completely useless in other types of crash loading. Consequently, dis-
tinct and sometimes completely independent systems must be developed for
specific collision scenarios.

In contrast to the standard passive systems, the proposed approach focuses
on active adaptation of energy absorbing structures (equipped with a sensor



2 J. Holnicki-Szulc, P. Paw lowski and M. Wik lo

Fig. 1. Testing example of truss-like cantilever. a) the initial configuration, b) the
stiffest substructure, c) the most compliable substructure, d) the stiffest substruc-
ture designed for the second load case VDM Based Dynamic Analysis of Adaptive
Structure

system detecting impact in advance and controllable semi-active dissipaters,
so called structural fuses) with a high ability of adaptation to extreme over-
loading. The concept formulation and first numerical analysis are based on the
previously published paper [4]. Various formulations of crashworthiness-based
structural design problem are presented in papers [1, 2, 8, 9, 10, 11–14], while
the adaptive crashworthiness concept has been first proposed in [3] and [6].
The optimal design methodology proposed below combines sensitivity analysis
with the redesign process, allowing optimal redistribution of material as well
as stress limit control in structural fuses. It is assumed that this ‘smart’ de-
vices are able to release structural connections in a controlled way, triggering
plastic-like distortions mimicking elasto-plastic behaviour shown in Fig. 2.

The objectives in design of impact absorbers are the following:

• to sustain all expected impact loads and especially the one with maximal
impact energy,

• to absorb all expected impact loads in the most smooth way, minimizing
maximal accelerations.

Assuming first only one state of impact load, with possible variation of
impact intensity, let us take into account the following definitions:

Eu – maximal expected impact energy
σu – yield stress level for ideal elasto-plastic material used to built the struc-

ture
βu – maximal allowed plastic-like distortion to be generated in structural

fuses.

Now, assume that in hiperstatic truss-like structure (k redundant) k inde-
pendent states of self-equilibrated stresses can be generated in such a way that
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the yield stress level σ⋆ ≤ σu is reached (under a given load) at the same time
in all structural members. Then, the minimal volume of material V necessary
to dissipate the maximal expected impact energy Eu can be calculated from
the following formula: Eu = V σuβu, requiring uniformly distributed maximal
stresses triggering plastic distortions in all structural members. Note, that
some initial state of virtual distortions β0′ has to be introduced in order to
generate desired prestress described above.

Having defined the minimum volume of structural material let us discuss
the heuristic methodology for structural remodeling on the example of truss-
like cantilever shown in Fig. 1a. and loaded dynamically in structural node
(mass m hits the tip joint with the initial velocity v). The well-known solu-
tion for the optimal topology of the stiffest substructure S1 (made from the
determined material volume) is shown in Fig. 1b (cf. [7]) while the most com-
pliant substructure S2 is demonstrated in Fig. 1c. Both of these substructures
are isostatic and the material distribution (sizing of members’ cross-sections)
guarantees uniformly distributed locally extremal stresses in response to the
impact I(m, v).

Let us now calibrate the substructures S1 and S2 defined above in such
way, that the volumes of the material for both of them are identical and
equal to V/2. Finally, let us compose the resultant structure (S1 ∪S2), where
the cross-section of each element i is defined as the following mean value:
µi = (µ1

i +µ2
i )/2, and where the coefficient µ1

i (µ1
i = Ai/A

′
i, Ai and A′

i denote
modified and the initial cross-section of the member i, respectively) describes
the ratio of cross-section modification for the element i from the substructure
S1, while a coefficient µ2

i describes the ratio of cross-section modification for
the element i from the substructure S2. In the example shown in Fig. 1 the
topology of the resultant complex structure is the same as the topology of the
initial configuration (Fig. 1a).

The remodeling process described above is related to the following first

problem formulation:

min V = min
∑

i

µiA
′
ili (1)

subject to the following constraints:
∣

∣β0
i (t)

∣

∣ ≤ βu

|σi(t)| ≤ σ⋆ ≤ σu

β0
i (t)σi(t) ≥ 0

(2)

where li denotes the length of the member i and stresses σi(t) depend on the
maximal expected impact load I(m, v) and the control parameters: µi, σ⋆

i ,
β0′

i , what will be discussed in the next section. The constraint (2) describes
the condition of dissipative character of plastic-like distortions generation.

Having determined the material remodeling described above, the following,
second problem of adaptation to the identified (in advance, using a sensor
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system) impact load can be formulated:

min max üi(t) (3)

subject to the following constraints:

|ui(t)| ≤ uu (4)

where displacements ui(t) depend on the identified in real time impact load
I(m, v), previously determined material redistribution µi and the control pa-
rameters: σ⋆

i , β0′
2 describing plastic-like adaptation and the initial prestress,

what will be discussed in the next section.
The following strategies of adaptation to the identified in real time impact

loads have to be considered:

• detachment of elements i: (i ∈ S2)∧(i /∈ S1) and tuning proper stress levels
σ⋆ allows to obtain the most compliable substructure S2, able to receive
(the most smoothly) small impacts with constraint (4) still satisfied,

• detachment of elements i: (i ∈ S1)∧(i /∈ S2) and tuning proper stress levels
σ⋆ allows to obtain the stiffest substructure S1, able to receive stronger
impacts without excessive deflections violating constraint (4),

• introducing proper initial distortions β0′
2 in elements of the substructure

S1, and tuning stress levels σ⋆ allows to obtain the uniform distribution of
the stress level σ⋆ in all structural elements and simultaneous triggering
plastic-like distortions, what leads to the most effective impact energy dis-
sipation. This third strategy should be applied when the impact capacity
of the second one is too low.

Note, that detachment of structural elements mentioned in the two first
strategies can be realized introducing properly determined initial distor-
tions β0′

2 .
In multi-load cases compromise solutions for the material redistribution

have to be taken into account. For example, the same impact I(m, v) provoked
by different masses and initial velocities leads to different mass distribution
(µi). Optimal solutions for slow impacts (bigger mass and lower initial velo-
cities) require mass transportation to the support neighborhood while in the
case of fast impact (the same impact energy provoked by smaller mass hitting
the structure with higher velocity) the mass transportation to the neighbor-
hood of loaded node can be observed (cf. [7]). Therefore, in case of expected
variable m/v ratio, the optimal material redistribution requires a compromise
solution. Considering optional impact load state (cf. Fig. 1d), the topology
of the stiffest substructure is different from the previous one (Fig. 1b), what
also demonstrates that the determinations of the compromise solution for
a multi-load remodeling problem require new numerical tools able to tackle
this challenging problem. The proposition of new numerical technique (based
on so called Virtual Distortion Method, VDM, cf. [5]) able to solve the prob-
lem discussed above will be discussed in the next two sections.
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2 VDM Based Dynamic Analysis of Adaptive Structure

In this chapter we will formulate the VDM based description of the dynamic
response of elasto-plastic truss structure. Applying discretized time descrip-
tion, the evolution of strains and stresses (with respect to initial cross-sections)
can be expressed as follows:

εi(t) = εL
i (t) +

∑

τ≤t

∑

j

Dij(t − τ) · ε0
j(τ) +

∑

τ≤t

∑

k

Dik(t − τ) · β0
k(τ) (5)

σ′
i(t) =Ei

(

εi(t) − ε0
i (t) − β0

i (t)
)

σ′
i(t) =Ei



εL
i (t) +

∑

τ≤t

∑

j

Dij(t − τ) · ε0
j(τ) − ε0

i (t)+

∑

τ≤t

∑

k

Dik(t − τ) · β0
k(τ) − β0

i (t)





(6)

where so called dynamic influence matrices Dij(t− τ) describe the strain evo-
lution caused in the truss element member i and in time instance t, due to unit
virtual distortion impulse generated in member j in the time instant τ . The
vector εL

i (t) denotes the strain evolution due to external loads applied to the
elastic structure with initial material distribution (unmodified cross-sections
of members), ε0

i (t) denotes virtual distortions responsible for modification
of design variables and β0

i (t) describes plastic-like distortions. Note that the
matrix D stores information about the properties of the entire structure (in-
cluding boundary conditions) and describes dynamic (not static) structural
response to a locally generated impulse of virtual distortion. Note also that
the influence of local modifications of design variables on the stiffness matrix
only, was assumed in further analysis. The full analysis taking into account the

Fig. 2. Piece-wise linear constitutive relation for the adaptive structural member
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influence of virtual distortions ε0
i (t) on both, the stiffness as well as the mass

matrices is more complicated and will be discussed in separate publication.
From now on, we assume that small Latin index j runs through all modified
members, and small Latin index k runs through all plastified elements.

In order to take into account elasto-plastic structural behaviour, let us use
the bilinear constitutive model with hardening (Fig. 2), given by the equa-
tion (7)

σi(t) − σ⋆
i = γiEi (εi(t) − ε⋆

i ) (7)

where σ⋆
i denotes plastic yield stress, γi denotes hardening parameter and Ei

denotes Young’s modulus.
Now, when we substitute stress (6) and strain (5) evolution in time to the

formula (7) we obtain the following equation:

β0
i (t) = (1 − γi)

(

εL
i

(t) − ε⋆
i

)

+ (1 − γi)
∑

τ≤t

∑

j

DD
ij (t − τ ) · ε0

j (τ)

+ (1 − γi)
∑

τ≤t

∑

k

DH
ik (t − τ ) · β0

k (τ) (8)

Taking advantage of two expressions for the internal forces applied to the
so called distorted (9) (with modification of material distribution modeled
through virtual distortions) and modified (10) (with redesigned cross-sections
from A to A′, without imposing virtual distortions) structure:

Pi(t) = EiAi

(

εi(t) − ε0
i (t) − β0

i (t)
)

(9)

Pi(t) = EiA
′
i

(

εi(t) − β0
i (t)

)

(10)

A formula combining components ε0
i (t) and β0

i (t) can be derived, where
these components are non zero only for distorted and/or plastified elements.

If we assume that forces and strains in both structures: distorted (9) and
modified (10) are the same, the modifications simulated with virtual distortion
can be combined with these distortions through the flowing formula:

ε0
i (t) = (1 − µi)

(

εi(t) − β0
i (t)

)

(11)

where εi(t) describes strain in member i in time t, while µi = Ai/A
′
i denotes

ratio of the new cross-section to the initial one. Parameter µi ∈ 〈0, 1〉 specifies
the size of modification of cross-sections in element i. If µi = 1 that means
that in element i the cross-section does not change, and if µi = 0 that means
that element i can be neglected in the analysis.

The formula (11) can be rewritten in the following form (12):

µi =
Ai

A′
i

=
εi(t) − ε0

i (t) − β0
i (t)

εi(t) − β0
i (t)

(12)

Now let us substitute strain evolution in time (5) to formula (12) getting
the following set of equations:
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ε0
i (t) = (1 − µi) εL

i
(t) +

∑

τ≤t

∑

j

DD
ij (t − τ ) · ε0

j (τ)

+
∑

τ≤t

∑

k

DH
ik (t − τ) · β0

k (τ) − β0
i (t) (13)

Note that the equations (8) are not dependant on the virtual distortions
responsible for modification of design variables in time t, but only on the
distortions in previous time steps ε (τ) because of the assumption (14).

Dij (0) = 0 (14)

Therefore, the plastic-like distortions β0
i (t) should be calculated first in

each time step of the algorithm.
Equations (8) and (13) need only computation of the right-hand side ex-

pressions, and we need not solve the coupled sets of equations.
Formulas (8) and (13) allow us to compute the virtual distortions’ devel-

opment in time, modeling both: assumed remodeling of material distribution
as well as adapted plastic-like stress limits.

If there is no plasticity in our problem, then plastic-like distortions are
equal to zero and the equation (13) takes the following form:

ε0
i (t) = (1 − µi) εL

i
(t) +

∑

τ≤t

∑

j

Dij (t − τ) · ε0
j (τ). (15)

Analogously, if there is no remodeling, distortions are equal to zero (the
parameter µi is equal to one) and equation (8), determining plastic like dis-
tortions’ development takes the following form:

β0
i (t) = (1 − γi)

(

εL
i

(t) − ε⋆
i

)

+ (1 − γi)
∑

τ≤t

∑

k

DH
ik (t − τ) · β0

k (τ) (16)

To prove that the VDM method gives the same solutions as commercial
programs let us compare results for a simple truss structure shown in Fig. 3
with the structural response determined with ANSYS.

Fig. 3. Testing example truss structure. (Young modulus Ei = 2.1×1011 Pa, cross-
sections Ai = 1 × 10−4 m, density ρi = 7800 kg/m3)
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All elements have different yield stress limits σ⋆
i as well as parameters

responsible for modification of design variables µi.

σ⋆
1 =8 × 107Pa, σ⋆

2 =4 × 107Pa, σ⋆
3 =6 × 107Pa

µ2 =0.7, µ1 =0.5, µ3 =0.9

In the lower node, concentrated mass 20 kg is added, together with the
following initial condition (modeling with external object):

V 0
x = 3 m/s, V 0

y = 5 m/s.

Fig. 4. Strain evolution in time for elements: a) left element, b) central element

Fig. 5. Stress evolution in time for elements: a) left element, b) central element

Fig. 6. Plastic distortion evolution in time for elements: a) left element, b) central
element
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On the graphs, the comparison of strain (Fig. 4), stress (Fig. 5) and plastic
distortion (Fig. 6) development for the first and the second element, respec-
tively is demonstrated.

Note, that only modification of the stiffness matrix (due to remodeling)
has been taken into account in the above formulas. Analogous modification of
the mass matrix has to be added in order to describe the complex remodeling
phenomena. However, it was decided to keep this presentation simpler without
additional complication of formulas.

3 Gradient Based Approach to Structural Remodeling

Let us demonstrate now, how the VDM based approach supports sensitivity
analysis, useful in optimization procedures. Assume that the objective func-
tion is defined as maximization of dissipated energy during the adaptation
process, given by the following formula:

U max =
∑

t

∑

i

σi(t)∆βi(t)µiA
′
ili (17)

subject to constrains:

−β̃i ≤ βi ≤ β̃i, 0 ≤ µi ≤ 1, µiA
′
ili = const (18)

where β̃i denotes lower and upper limit imposed on plastic-like distortions,
µiA

′
ili denotes total volume of material which should be constant during the

remodeling process. In this way, solving the above problem (17) for increasing
load intensities, one can find the desired design of the structure with maximal
impact load capacity, constraining considerations to small deformations.

To make further analysis more communicative, let us distinguish two par-
ticular cases. The first one, establishing the best material redistribution in all
structural members leads to the determination of the following design vari-
ables: µi = Ai/A

′
i. In this case ∆β0

k(t) = 0, and ∆β0
k(t) is replaced by εi(t) in

the objective function (17).
The gradient of this objective function can be calculated analytically and

takes the following form:

∂U

∂µm

=

(

∂U

∂σi(t)

∂σi(t)

∂ε0
j(t)

+
∂U

∂εi(t)

∂εi(t)

∂ε0
j(t)

)

∂ε0
j(t)

∂µm

+
∂U

∂µm

(19)

where the particular components can be expressed as follows:
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∂U

∂σi(t)
=
∑

i

∆βi(t)µiA
′
ili

∂U

∂εi(t)
=
∑

i

σi(t)µiA
′
ili

∂U

∂µm(t)
=
∑

t

σm(t)εm(t)A′
mlm

∂σi(t)

∂ε0
j(t)

= − Eiδij

∂ε0
j(t)

∂µm

= − εL
i

(t) +
∑

τ≤t

∑

j

DD
ij (t − τ ) ·

∂ε0
j (τ)

∂µm

(20)

In the second case we are looking for optimal distribution of yield stress
limits in structural members and the design variables during optimization
process are σ⋆

i . The corresponding gradient of the objective function, with
respect to yield stress limits, takes the following form:

dU

dσ⋆
l

=

(

∂U

∂σp(t)

∂σp(t)

∂∆β0
k(t)

+
∂U

∂∆β0
k(t)

)

∂∆β0
k(t)

∂σ⋆
l

(21)

where the new components of gradient can be expressed as follows:

∂σp(t)

∂∆β0
k(t)

= −Ep∆β0
p(t)δpk (22)

∂∆β0
k(t)

∂σ⋆
l

= −
(1 − γi)

E
+ (1 − γi)

∑

τ≤t

∑

k

DH
ik (t − τ) ·

∂β0
k (τ)

∂σ⋆
l

(23)

Finally, the last case couples optimization sub-problems: remodeling end
adaptation of adaptive structure. The design variables describe simultaneously
material redistribution as well as yield stress limits: µi = Ai/A

′
i and σ⋆

i ,
respectively.

The coupled gradient formula takes the following form:

dU

dσ⋆
l

=

(

∂U

∂σp(t)

(

∂σp(t)

∂ε0
j(t)

∂ε0
j(t)

∂∆β0
k(t)

+
∂σp(t)

∂∆β0
k(t)

)

+
∂U

∂∆β0
k(t)

+
∂U

∂µm

∂µm

∂∆β0
k(t)

)

∂∆β0
k(t)

∂σ⋆
l

(24)
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4 Design of Adaptive Structure (Small Deformations) –
Testing Example

The coupled, gradient based remodeling problem described above is restricted
to small deformations. However, it can be used as numerical tool for redesign
of topology of adaptive structure on the base of analysis performed in the
initial phase of structural response to the impact.

Let us demonstrate effectiveness of the proposed design concept of adaptive
impact absorber on the base of simple truss structure shown in Fig. 3. The
described above VDM technique (in development) will be soon applied to
solve real design problems for the proposed smart impact absorbing type of
structures.

Let us assume, that the testing structure of shock absorber (Fig. 3) is de-
signed to absorb the impact of mass m = 745 kg hitting (and sticking to the
node afterwards) the node with its initial velocity v, where v < 8.7 m/s. It
means that the maximal expected impact energy can reach Eu = mv2/2 =
28194.525 J. Consequently, the material volume used to built the structure
should be calculated from the formula: Eu = V σuβu (cf. section 1) and is
equal, assuming σu = 5 × 108 Pa and βu = 0.12, to V = 5.22 × 10−5 m2.
Now, following the methodology proposed in section 1, let us decompose the
structure into two substructures: S1 and S2 with the same volume of material:
V1 = V2 = V/2. The structural dynamic responses for substructures S1, S2

and for the composed structure S1 ∪ S2 are shown in Figs. 7b and 7c, respec-
tively. Changing initial impact velocity in the range: 〈0.54 m/s, 8.7 m/s〉 we
can observe evolution of stresses, strains and plastic distortions in elements of
the corresponding substructures S1 and S2 (Fig. 7b) and also the analogous
evolutions in the compound structure S1 ∪ S2 prestressed by introducing ini-
tial, plastic-like distortion β0′

2 = 2.62 × 10−3 into the vertical member of the
structure (Fig. 7c).

a)
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b)
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c)
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d)
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Fig. 7. Testing example of adaptive structure. a) decomposition into substructures
S1 and S2, b) dynamic responses for substructures S1 and S2, c) dynamic response
for the compound structure S1 ∪ S2, d) stress evolution in time for the compound
structure S1 ∪ S2 with switching off the middle element

The following characteristic impact velocities can be identified: v =
0.54 m/s, when the substructure S2 starts to yield, v = 3.9 m/s, when the
deflection of the substructure S2 reaches its assumed limitation uu = 0.108 m,
v = 7.5 m, when the plastic like distortion generated in substructure S1

reaches its assumed limitation βu, v = 8.7 m/s, when the plastic like dis-
tortion generated in compound structure S1 ∪ S2 reaches its assumed limi-
tation βu. Then, analyzing numerical results presented in the Fig. 7, the fol-
lowing interpretation can be given. For the impact velocities v < 0.54 m/s
the adaptive structure responds elastically, without any energy dissipation, as
the most compliant substructure S2 is still too stiff. For the impact velocities
0.54 m/s < v < 3.9 m/s the most compliant substructure S2 should be used for
the impact absorption (substructure S1 should be detached). For the impact
velocities 3 m/s < v < 6.1 m/s the stiffest substructure S1 should be used for
the impact absorption (substructure S2 should be detached). For the impact
velocities 6 m/s < v < 8.7 m/s the prestressed compound structure S1 ∪ S2

should be used for the impact absorption. Note, that the first mode of opera-
tion (S2 substructure) allows to reach accelerations 280% smaller than in the
second mode case (S1 substructure) for small impacts. On the other hand, the
third mode of operation (S1 ∪ S2 structure) allows reaching impact capacity
(in terms of energy dissipation) 110% higher than in the second mode case
(S1 substructure) for strong impacts. Note, that the limitation for impact ab-
sorption in the last case is due to active constraint βu reached in the vertical
member (cf.Fig. 7c). Then, switching off the connection between this member
and the rest of the structure (cf.Fig. 7d) (semi-active adaptation in real time)
allows extension of the structural impact capacity up to above 203% (com-
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paring with S1 substructure capacity) and the corresponding impact velocity,
as the inclined members will still continue process of dissipation.

The crucial points in the proposed methodology are:

• development of technique for detection and identification of the impact in
advance,

• development of devices for quickly responding, controlled in real time,
semi-active detachment of structural members and for introducing initial
distortions.

Another challenging field for research is mentioned above development of
methodology able to determine optimal control strategies for impact absorp-
tion in multi-load cases, when compromise solutions are required.

5 Optimal Adaptation to Impact Load (Large
Deformations)

Following the above described procedure for structural remodeling, let us
assume that the structural geometry is already determined. Then, the sec-
ond objective of the smoothest structural adaptation to identified impact can
be addressed. Still constraining ourselves to small deformations, the optimal
adaptation procedure based on the gradient calculation (7) can be proposed.
However, the main contribution to the impact energy dissipation is due to the
plastic flow, which makes an enlargement of strokes in controlled dissipaters
crucial. In the consequence, large deformations have to be taken into account.

To provide optimal energy absorption it is necessary to perform a process
of adaptation, consisting of the following three stages:

• Load identification
• Choosing optimal strategy
• Structural adaptation

The dynamic load level can be evaluated, in advance, before the impact
by measuring velocity and estimating the mass of the colliding body. Alter-
natively , its value might be identified at the beginning of the impact process
by sensors embedded into the structure.

In order to dissipate the kinetic energy in an optimal way, one has to apply
a correct strategy to the active elements, where the following two strategies
are formulated:

• semi-active control,
• active control.

In the first case pre-selected triggering stress levels σi in structural ele-
ments remain unchanged during impact, in the second one theoretical pos-
sibility of real-time changes in control parameters is assumed. Although full
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Fig. 8. The algorithm for semi-active control

real-time control does not seem to be feasible in a real design, one can expect
that at least a few stress changes might be applied during the impact time.

The problem of optimal adaptation can be formulated as follows:

• Semi-active control – for a given impact load minimize the difference be-
tween acceleration values in selected points of the structure and desired
response function q̈d

i (t):

min f =
∑

t

∑

i

[

q̈i(t) − q̈d
i (t)

]2
(25)

• Active control – for a given impact load, for every time step minimize the
difference between acceleration values in selected points of the structure
and desired response function q̈d

i (t):

min f(t) =
∑

i

[

q̈i(t) − q̈d
i (t)

]2
(26)

subject to the following constraints

|σ̄| ∈ 〈σ̄min, σ̄max〉 , max {q} ≤ q̄ (27)

where σ̄ denotes the plastic-like yield stress level and q̄ is the maximum
crush distance.

Fig. 9. The algorithm for active control
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Satisfactory solution of the above problem exists if the external load in-
tensity is not higher than the maximal safe load level. Beyond this limit
a control strategy with the highest possible capability of energy dissipation
must be applied.

The Multifolding Microstructure MFM

Let us discuss the truss-like microstructure (similar to honeycomb layout)
shown on Fig. 10. Elements arranged in a periodic pattern are equipped with
specially designed devices called micro-fuses. Micro-fuses provide control over
yield stress in an element. After reaching selected threshold elements exhibit
plastic-like behaviour.

Fig. 10. Multifolding microstructure MFM

In order to get the additional value of energy dissipation (due to the syn-
ergy of repetitive use of dissipaters) the crucial point is to pre-design the
optimal distribution of yield stress levels in all stickers, triggering desired
sequence of local collapses.

Two single-column MFM models with a different number of control param-
eters are presented on Fig. 11. The most basic structure has only two control
parameters (Fig. 11(b)): yield thresholds marked 1 and 2. Therefore, only two
presented folding sequences are possible.

More complex structure “5” with five control thresholds is depicted in
Fig. 11(a). The number of possible folding modes is in this case much greater
that in the latter one.

It is clearly visible that different distribution of yield stresses will result in
different behaviour of the MFM and different stiffness characteristics. There-
fore, structure can adapt itself to the level of dynamic loading.

Because of complex phenomena like plasticity and contact, modeling of
the MFM microstructure involves highly nonlinear and numerically expensive
dynamic FEM analysis.
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a) b)

Fig. 11. a) Single column MFM ”5” and b) ”2” with sample folding sequences

Simplified Model

In order to increase numerical efficiency of the analysis, a simplified analytical
model was introduced. The model describes behaviour of a single column of
the multifolding microstructure and is based on the following assumptions:

• the material is considered as a rigid-perfectly plastic, therefore the force
in a deforming structural member remains constant,

• the mass of the absorber is negligible comparing to the impacting mass,
• the process of deformation is divided into sequences: in each sequence only

one level of the microstructure is folding while the other elements remain
rigid.

• the dissipated energy related to the final deformation is equal to the initial
value of the kinetic energy

Such assumptions allow us to formulate the equilibrium equation based on
the second Newton’s law for the loaded node, for each sequence:

F (q(t)) = mq̈ (q(t)) (28)

Because the force in the elements, which are active in the current sequence,
is constant, the change in the resultant force is dependent only on the change
in the geometry of the elements. For the current sequence, this yields:

F (q) = 2σ⋆
i,actA sin θ (q) = 2σ⋆

i,actA
h − q

√

h2 − (h − q)
2
, q ∈ 〈0, 2h〉 (29)

Acceleration of the loaded node can be expressed as:
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Fig. 12. Kinematics assumed for the simplified model

q̈ (q) =
F (q)

m
, q ∈ 〈0, 2h〉 (30)

Energy of the plastic strain is equal to the work of the resultant force F

Dyssseq = Eplast =

2h
∫

0

F (q)dq (31)

To describe the behaviour of the single-column structure one has to solve
the following problem: for a given set of design parameters σ and kinetic

energy Ekin find corresponding evolution of acceleration of the loaded node

and total energy of the plastic strain Eplast =
Nseq
∑

1

Dyssseq.

The initial distribution of the yield stresses σ uniquely defines evolution
of the deformation. In each sequence elements with the lowest value of yield
stress are folding first. The process evolves until the dissipated energy Eplast

exceeds the initial kinetic energy Ekin.
The simplified model provides accuracy in predicting the acceleration and

dissipation combined with a very good performance of the algorithm.

Fig. 13. Results from the simplified and FEM analysis
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Control of the MFM

Process of structural adaptation to the impact consists of following stages:

• Load identification
• Selection of optimal strategy of dissipation
• Adaptation of active elements
• Dissipation of the energy

In order to provide optimal results of adaptive impact absorption one
has to apply a correct control strategy. Two different approaches, discussed
previously in [7], are considered: semi-active and active control. In the first case
pre-selected triggering stress levels σi in structural elements remain unchanged
during an impact, in the second one theoretical possibility of real-time changes
in the control parameters is assumed.

• Semi-active control
The objective function of the semi-active control is to minimize the max-
imal acceleration of the loaded node:f = min (maxt {q̈load(t)}), with con-
straints imposed on control parameters σi ∈ 〈σmin, σmax〉 and maximal
displacement qload ≤ qmax.
Figure 14 presents results obtained for the basic absorber “2” (with and
without applied control) compared with results for enhanced absorber “5”.
It is clearly visible that the multi-layered structure offers much better
performance in a very wide range of kinetic energy value (different mass
value with constant initial velocity of 15 m/s).

Fig. 14. Semi-active control results for absorbers ”2” and ”5” for different mass
values

• Active control
Objective function: for every time step, minimize the difference between ac-
celeration in the loaded node and desired response function q̈d: min f(t) =
[

q̈load(t) − q̈d(t)
]2

.
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Desired level of acceleration q̈d(t) must provide dissipation of kinetic
energy of the impact. Therefore, it is necessary to solve an additional
optimization task (in this case, based on a simplified approach).
In FEM analysis, at every time step control parameters (hardening co-
efficient in plasticity model) are updated on the basis of the objective
function’s gradient, which is calculated by the finite difference approach.
A classical algorithm of the steepest gradient descent is applied.
Results, obtained for the basic absorber “2”, are presented in Figs. 15
and 16. The strategy of active control is compared to the semi-active and
passive one. Active control further improves the performance of the ab-
sorber by 20%-30%. Nevertheless, it has to be taken into consideration
if such improvement can justify application of a complicated strategy in
comparison with the simple and robust semi-active approach.

Fig. 15. Results of different control strategies for impacting mass of 100 kg

Fig. 16. Results of different control strategies for impacting mass of 200 kg
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6 Conclusions

The methodology (based on the so-called Dynamic Virtual Distortion Method)
of the design of structures exposed to impact loading is presented in the work.
Minimization of material volume and accelerations of structural response are
chosen as the objective functions for optimal design of structures adapting
to impact loads. The cross-sections of structural members as well as stress
levels triggering plastic-like behavior and initial prestressing are the design
parameters.

The crucial points in the proposed methodology are:

• development of technique for detection and identification of the impact in
advance,

• development of devices for quickly responding, controlled in real time,
semi-active detachment of structural members and for introducing initial
distortions,

• another challenging field for research is mentioned above development of
methodology able to determine optimal control strategies for impact ab-
sorption in multi-load cases, when compromise solutions are required.

The paper demonstrates the effectiveness of the proposed concept. The
yield stress level adaptation to the applied load has significant influence on
the intensity of impact energy dissipation.

The concept of adaptive MFM systems has been discussed, where the
following general methodology in the design can be proposed:

• design a topological pattern and material redistribution of the adaptive
structure with given initial configuration for variety of all expected extreme
loadings,

• particularly, consider the MFM pattern in case of frontal impacts,
• apply in real time the pre-computed control strategy as the response for

detected (through a sensor system) impact.
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